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Abstract This paper presents a numerical method based on Fluctuationlessness
Theorem for the solution of Ordinary Differential Equations over appropriately
defined Hilbert Spaces. We focus on the linear differential equations in this work.
The approximated solution is written in the form of an nth degree polynomial of the
independent variable. The unknown coefficients are obtained by setting up a system
of linear equations which satisfy the initial or boundary conditions and the differential
equation at the grid points, which are constructed as the independent variable’s matrix
representation restricted to an n dimensional subspace of the Hilbert Space. An error
comparison of the numerical solution and the MacLaurin series with the analytical
solution is performed. The results show that the numerical solution obtained here
converges to the analytical solution without using too many mesh points.

Keywords Ordinary differential equations · Fluctuations · Hilbert spaces ·
Eigenvalues

1 Introduction

Differential Equations have a great importance for the modeling of many problems
from various scientific and engineering problems in Applied Mathematics [1]. These
problems may contain either partial or ordinary differential equations. Here we focus
on ordinary differential equations. Although it may be considered too simple, we aim
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to develop a method to have a heuristical point of view to construct a strong basis for
the future theory. There is a huge accumulation knowledge for solving the ordinary
differential equations both analytically and numerically [2,3]. Since not every prob-
lem can be solved analytically, scientists have developed iterative numerical solutions
[4–8]. These methods may have good approximations to the analytical solutions but
they may need to use too many mesh points, which may bring computational complex-
ity for the solution [9]. But the method that we develop here have a rapid numerical
convergence even by using a few mesh points.

Fluctuations may arise in probabilistic events and they describe random plus or
minus deviations from means. In these cases, the individual components’ behaviors
can not be determined in the framework of causality. Instead, the evolution of the proba-
bility can be determined. In Quantum Mechanics [10–15], Non-equilibrium Statistical
Mechanics [16] and Quantum Chemistry [17–19], fluctuations have a lot of impor-
tance. We don’t get into the details of the fluctuations and their roles in these kinds of
phenomena here, instead we will deal with the case of fluctuationlessness in mathe-
matical sense. We will work in an appropriately chosen Hilbert Space throughout the
paper.

This paper is organized as follows: In the second section we explain Fluctuationless-
ness Theorem in detail. In the third section the application of this theorem in numerical
solution for an arbitrary order of linear Ordinary Differential Equations is explained.
The fourth section covers the implementations presented in tables comparatively. The
fifth section completes the paper via concluding remarks.

2 Fluctuationlessness theorem

Let H be a Hilbert Space generated by analytic and square integrable univariate func-
tions on a closed interval [a, b] and let Hn be a subspace generated by orthonormal
functions u1(x), . . . , un(x). We define the inner product of functions f (x) and g(x)

in this space as

( f, g) ≡
b∫

a

f (x)g(x)w(x)dx, (1)

where w(x) is a given weight function. We can express a function g(x) in this space
as a linear combination of above basis functions as follows:

g (x) ≡
n∑

i=1

gi ui (x) (2)

Here coefficients gi , (1 ≤ i ≤ n) are real constants and depend on the structure
of the function g(x). This dependency can be determined by orthonormality of the
basis functions. Therefore we can write the inner product of uk and g in the following
way:
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(uk, g) ≡
(

uk,

n∑
i=1

gi ui

)
=

n∑
i=1

gi (uk, ui ) =
n∑

i=1

giδk,i = gk, 1 ≤ k ≤ n (3)

If we substitute this result in (2) we obtain the following equation for the function
g(x):

g (x) =
n∑

i=1

ui (x) (ui , g) ≡
n∑

i=1

Pi g (x) ≡ P(n)g (x) (4)

Here Pi is an integral operator which projects to the space which is spanned by ui (x).
The operator represented by P(n) projects to an n-dimensional space spanned by
u1 (x) , . . . , un (x). While P(n) is a unitary operator on this space, it is a projection
operator in H − Hn .

Now we define a new operator x̂ . The domain of this operator is H and the action
of this operator on a function g(x) in Hn can be expressed as follows:

x̂ g (x) = xg (x) , x ∈ [a, b] (5)

This operator is an algebraic operator [20]. Its function is to multiply its operand by x .
Now we will obtain the matrix representation of x̂ operator. We can write the following
equation for g(x) given in (2):

x̂ g (x) =
n∑

j=1

g j x̂u j (x) = x̂ P(n)g(x) (6)

We can observe that although P(n)g(x) is in the space spanned by u1 (x) , . . ., un (x),
the operator obtained multiplying by x may not be in this space. Therefore the effect
of x̂ operator on a function in an n-dimensional space will cause a space extension.
In order to avoid from this situation, we will use P(n) x̂ operator instead of x̂ , which
is the projection of x̂ operator on this n-dimensional space. Hence we obtain:

P(n) x̂ g(x) =
n∑

j=1

g j P(n) x̂u j (x) = P(n) x̂ P(n)g(x) (7)

Here we introduce an operator x̂res which is defined as follows:

x̂res ≡ P(n) x̂ P(n) (8)

Now we can construct the matrix representation of x̂res operator by the following
procedures. First we define a new function h(x) as

h(x) ≡ P(n) x̂ P(n) =
n∑

j=1

g j P(n) x̂ P(n)u j (x). (9)
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Since this function is in the space spanned by u1(x), . . . , un(x), we can write the
following expressions:

h(x) =
n∑

k=1

hkuk(x) (10)

and

n∑
k=1

hkuk(x) =
n∑

j=1

g j P(n) x̂ P(n)u j (x) (11)

If we take the inner product of the both sides in (11) by ui (x), (1 ≤ i ≤ n) and use
the orthonormality property, we obtain the following equation:

hi =
n∑

j=1

(
ui , P(n) x̂ P(n)u j

)
g j , 1 ≤ i ≤ n (12)

We express this equation in terms of n-dimensional vectors g and h, and the matrix X
whose general term is X (n)

i, j .

g = [g1 . . . gn]T , h = [h1 . . . hn]T , (13)

X (n)
i, j =

(
ui , P(n) x̂ P(n)u j

)
, 1 ≤ i, j ≤ n (14)

Therefore we can express (12) in terms of (13) and (14) as

h = X(n)g. (15)

To obtain this equation in a compact form, we explained the procedure of obtaining
the matrix representation of x̂res operator in detail although these concepts are well
known. Here the matrix X(n) is the matrix representation of x̂res defined from Hn to
Hn . Now we can write the following equation for x̂ operator.

x̂ ≡
(

P(n) +
[

Î − P(n)
])

x̂
(

P(n) +
[

Î − P(n)
])

= P(n) x̂ P(n) +
[

Î − P(n)
]

x̂ P(n)

+P(n) x̂
[

Î − P(n)
]

+
[

Î − P(n)
]

x̂
[

Î − P(n)
]

(16)

If we define x̂ f luc as

x̂ f luc ≡
[

Î − P(n)
]

x̂ P(n) + P(n) x̂
[

Î − P(n)
]

+
[

Î − P(n)
]

x̂
[

Î − P(n)
]
, (17)

then we can write the following equation for x̂ operator:
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x̂ ≡ x̂res + x̂ f luc (18)

Here
[
Î − P(n)

]
operator is a projection operator which goes to 0̂ operator as n

goes to infinity. The matrix representation of this operator in the space spanned by
u1 (x) , . . . , un (x) is the 0 matrix. But the infinite dimensional matrix representation
of this operator in the Hilbert Space H is different than the infinite dimensional zero
matrix although its norm gets smaller as n increases. This situation can be explained by
the interaction of Hn and x̂ operator. The indices of the basis functions in

[
Î − P(n)

]
operator are greater than n. The orthonormality property of the basis functions causes
oscillations at the variables of the basis functions. In fact un has exactly n zeroes in the
orthonormality domain. This means oscillations between positive and negative values.
The frequency of these oscillations increase as n grows and this situation causes great
cancelations at the output terms of the action of the operator

[
Î − P(n)

]
on any func-

tion in H. In other words, the image of a function in H under this operator fluctuates
around zero and somehow calculates the oscillations around zero. This operator is
called as nth order Fluctuation Operator [20,21].

The above procedures can also be applied to the square of x̂ operator, x̂2. In this
case the matrix representation of x̂2

f luc is not the zero matrix. In fact it is equal to

the matrix representation of P(n) x̂
[
Î − P(n)

]
x̂ P(n) operator. This can be proven via

these equations:

P(n)2 = P(n), P(n)
[

Î − P(n)
]

= 0̂n, (19)
[

Î − P(n)
]

P(n) = 0̂n,
[

Î − P(n)
]2 =

[
Î − P(n)

]
(20)

The matrix representation of P(n) x̂
[
Î − P(n)

]
x̂ P(n) operator on an n dimensional

space is equal to the subtraction of the square of the matrix representation of the
operator P(n) x̂ P(n) from the matrix representation of the operator P(n) x̂2 P(n). This
term defines the dominant contribution resulting from oscillations. Therefore the term
P(n) x̂

[
Î − P(n)

]
x̂ P(n) is called as Independent Variable’s First Order Fluctuation

Operator, since the fluctuation operator
[
Î − P(n)

]
appears once in this term [20]. The

approximation obtained by ignoring the terms which contain fluctuation operator is
called as Fluctuationlessness Approximation. In this case x̂ operator can be expressed
in fluctuationlessness limit as

x̂ ≈ x̂res ≡ P(n) x̂ P(n). (21)

Now we will define a function type operator f̂ , that multiplies its operand by an ana-
lytic function f (x) defined on a closed interval [a, b]. The domain of this operator
is the Hilbert Space of continuous and square integrable functions on [a, b]. This
operator is an algebraic operator which multiplies its operand by f (x). This can be
expressed as

f̂ g(x) = f (x)g(x), x ∈ [a, b]. (22)
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Hence f̂ is an algebraic operator and it can be defined in terms of x̂ as follows:

f̂ ≡ f (̂x) (23)

The fluctuationlessness approximation of f̂ can be given as

f̂ ≈ f (̂xres) ≡ f
(

P(n) x̂ P(n)
)

. (24)

Previously we mentioned that the matrix representation of x̂res operator in a space
spanned by the basis functions u1 (x) , . . . , un (x) was X(n). In that case we can say that
the matrix representation of x̂ m

res operator is X(n)m
in this space, where m = 0, 1, 2, . . .,

which can be proven by induction [20]. Therefore if we represent the matrix represen-
tation of f̂ operator as F(n) in this space, then the fluctuationlessness approximation
for F(n) can be written as,

F(n) ≈ f
(

X(n)
)

. (25)

This approximation is called as Fluctuationlessness Theorem and can be stated as
follows: [20]

Theorem 1 The matrix representation of an algebraic function type operator is equal
to the image of the matrix representation of the independent variable over an n dimen-
sional space Hn under the function of the algebraic operator, which is analytic on
[a, b] at the fluctuationless limit.

Therefore we can construct the matrix representation of a univariate function’s
operator via X(n) [20–23]. In order to accomplish this work, we take the following
equations:

X(n)x j = ξ j x j , 1 ≤ j ≤ n. (26)

Here x j ’s are eigenvectors with norms 1, and ξ j ’s are the corresponding eigenvalues.
In the case when X(n) is symmetric, eigenvectors form an orthonormal basis set in
an n-dimensional space Kn , which is constructed by cartesian vectors. We define a
matrix Q which takes each eigenvector as columns:

Q = [x1 . . . xn] (27)

The transpose of this matrix is equal to its inverse. The multiplication of X(n) by Q
from right hand side results in a multiplication of the matrices Q and a matrix whose
diagonal elements are the eigenvalues ξi , i = 1, . . . , n. We can obtain the spectral
representation of the matrix X(n) from this relation as follows:

X(n) = Q
[
ξ1x1 . . . ξnxn

]
QT

X(n) =
n∑

j=1

ξ j x j xT
j . (28)
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If we take the square of both sides in this equation, we will have the following equation
for X(n)2

:

X(n)2 =
⎛
⎝ n∑

j=1

ξ j x j xT
j

⎞
⎠

2

=
n∑

j=1

n∑
k=1

ξ jξkx j xT
j xkxT

k

=
n∑

j=1

n∑
k=1

ξ jξkδ jkx j xT
k =

n∑
j=1

ξ2
j x j xT

j (29)

When we generalize this situation to any order k we can write

X(n)k =
n∑

j=1

ξ k
j x j xT

j , k ≥ 1, (30)

which can easily be proven by induction. In this equation the term x j xT
j is an outer

product and it has a projection property which projects from Kn to the space spanned
by x j . These one dimensional spaces spanned by x j ( j = 1, 2, . . . , n) are orthogonal
to each other and their union gives Kn . Therefore the summation of n outer product
of each projection matrix is a unit matrix of Kn ; that is

I =
n∑

j=1

x j xT
j . (31)

In this case we can rewrite (30) as

X(n)k =
n∑

j=1

ξ k
j x j xT

j , k ≥ 0. (32)

This means

f
(

X(n)
)

=
n∑

j=1

f
(
ξ j

)
x j xT

j , k ≥ 0. (33)

Here f
(
X(n)

)
is the image of the independent variable’s matrix representation. By

Fluctuationlessness Theorem this term is equal to the matrix representation of f̂ oper-
ator, which is defined on the n-dimensional Hilbert Space Hn of analytic and square
integrable functions. If we represent Mn

(
f̂

)
as the matrix representation of f̂ oper-

ator, then the following equation holds.

Mn (
f̂

) = f
(

X(n)
)

(34)
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3 Numerical solution of nth order initial value problems by Fluctuationlessness
theorem in a closed interval [a,b]

We consider the following nth order Ordinary Differential Equation with initial con-
ditions in a closed interval.

y(n) (t) + b1 (t) y(n−1) (t) + · · · + bn−1 (t) y′ (t) + bn (t) y(t) = r (t) ,

y (a) = y0, y′ (a) = y1, . . . y(n−1) (a) = yn−1, (35)

where t ∈ [a, b]. We study on a subspace Hm of Hilbert Space H, where m > n. By
taking a new independent variable

x ≡ (t − a)/(b − a) , (36)

the domain is transformed to 0 ≤ x ≤ 1, and by using z as the new dependent variable
(35) becomes

z(n) (x) + a1 (x) z(n−1) (x) + · · · + an−1 (x) z′ (x) + an (x) z(x) = q (x) ,

z (0) = z0, z′ (0) = z1, . . . z(n−1) (0) = zn−1, (37)

where x ∈ [0, 1]. The relationships between ak and bk in addition of the functions
r (t) and q (x) can be stated as follows:

ak (x) = (b − a)k bk ([b − a] x + a) , 1 ≤ k ≤ n (38)

q (x) = (b − a)n r ([b − a] x + a) (39)

The initial conditions in (35) can be rewritten in terms of the new variables as

zk = (b − a)k

k! yk, 1 ≤ k ≤ n − 1. (40)

We take the space of the square integrable functions as the Hilbert Space H, and define
the inner product of two functions f , g in this space as

( f, g) ≡
1∫

0

f (x) g (x) w (x) dx, (41)

where w (x) is a weight function and normalized as follows:

1∫

0

w (x) dx = 1 (42)
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In this space we define an orthonormal set of functions as

U = {ui (x)}∞i=1 . (43)

The functions in this set are constructed via Gram-Schmidt orthogonalization process.
The first element in (43) has to be

u1 (x) = 1. (44)

Instead of using the independent variable x , we will use the algebraic multiplication
operator x̂ which multiplies its operand by the independent variable x , throughout
the work. The spectrum of this operator is the closed interval [ 0, 1 ]. Therefore it has
a continuous spectrum and there is no multiplicity in any eigenvalues. For the func-
tions ak (x), z (x), z(i) (x) and q (x) we will respectively use âk , ẑ, ẑ(i) and q̂ which
multiply their operands by ak (x), z (x), z(i) (x) and q (x), respectively. Their spec-
trums are the continuous intervals of

[
ak (x)min , ak (x)max

]
,
[

z (x)min , z (x)max
]
,[

z(i) (x)min , z(i) (x)max
]

and
[

q (x)min , q (x)max
]
, respectively. They may have mul-

tiple eigenvalues depending on the structure of the functions. The operator ẑ(i) is used
for the i-th derivative of ẑ which multiplies its operand by z(i) (x). The ordinary dif-
ferential equation in (37) can be expressed in terms of the images of u1 under all these
operators mentioned above as follows:

(̂
z(n) + â1̂z(n−1) + · · · + ân−1̂z′ + ân ẑ

)
u1 (x) = q̂u1 (45)

We can express the equation (45) in corresponding cartesian space by changing each
operator by its matrix representation and the function u1 (x) by the unit cartesian vec-
tor e1 whose only nonzero element is located at the first position and has the value of
1. In other words, let M(ĝ) denote the matrix representation of the operator ĝ, then
we can write the following equation:

[
M

(̂
z(n)

)
+ M (̂a1) M

(̂
z(n−1)

)
+ · · · + M (̂an) M (̂z)

]
e1 = M (q̂) e1, (46)

Here the vectors and the matrices are of infinite dimension. In order to work on finite
dimensional entities we will use an m-dimensional subspace Hm of H spanned by
the functions u1 (x) , u2 (x) , . . . , um (x) instead of the space H. Therefore we need
to reduce the dimension by using m × m left uppermost part of the related matrices.
Hence, we can rewrite (46) as

[
M(m)

(̂
z(n)

) + M(m) (̂a1) M(m)
(̂
z(n−1)

)
+ · · · + M(m) (̂an) M(m) ( ẑ )

]
e(m)

1 = M(m) (q̂) e(m)
1 , (47)

If we denote the matrix representation of the operator x̂ on the subspace Hm as X(m),
then we can write the following approximated expressions by using the Fluctuation-
lessness Theorem.
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M(m)
(̂

z(i)
)

≈ z(i)
(

X(m)
)

(48)

M(m) (̂ak) ≈ ak

(
X(m)

)

M(m) (q̂) ≈ q
(

X(m)
)

The matrix X(m) is symmetric and its spectral representation can be written as follows:

X(m) =
m∑

i=1

ξi xi xT
i (49)

Here xi is the eigenvector with a unit norm of the i th eigenvalue ξi . Substituting (47)
in (48) we obtain the following result.

m∑
i=1

[
z(n) (ξi ) + a1 (ξi ) z(n−1) (ξi )

+ · · · + an (ξi ) z (ξi ) − q (ξi )

] (
xT

i e(m)
1

)
xi = 0 (50)

Since the eigenvectors are linearly independent the coefficients of xi should vanish.
So we can write the following equations:

z(n) (ξi ) + a1 (ξi ) z(n−1) (ξi ) + · · · + an (ξi ) z (ξi ) − q (ξi ) = 0, 1 ≤ i ≤ m.

(51)

We propose the following structure for the approximated solution of the differential
equation:

f (x) = z0 + z1x + · · · + zn−1xn−1 +
m−n+1∑

k=1

fk xk+n−1 (52)

To find the unknown constants fi , (1 ≤ i ≤ m − n + 1) in (52 ) we construct a set of
[m − n + 1]-dimensional vectors and matrices as follows:

K(i, j) =
{

an (ξn−1+i ) ξn−1+i , i = j
0, i �= j

,

K(i, j)
r =

{
an−r (ξn−1+i ) , i = j
0, i �= j

,

S(i, j)
r =

⎧⎨
⎩

r∏
k=1

(n + i − k) , i = j

0, i �= j
,
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Vr =

⎡
⎢⎢⎢⎣

ξn−r
n ξn−r+1

n . . . ξm−r
n

ξn−r
n+1 ξn−r+1

n+1 . . . ξm−r
n+1

...
...

...
...

ξm ξn−r+1
m . . . ξm−r

m

⎤
⎥⎥⎥⎦ ,

an
T = [

an (ξn) . . . an (ξm)
]
,

uT = [
1 0 . . . 0

]
,

qT = [
q (ξn) . . . q (ξm)

]
,

a = z0an +
n−1∑
i=1

zi

[
K.Vn−i+1 + iK1Vn−i+1 + i (i − 1) K2Vn−i+2
+i (i − 1) (i − 2)K3Vn−i+3 + · · · + i !Ki Vn

]
· u

(53)

By using these matrices and vectors the unknown coefficients fi , (1 ≤ i ≤ m −n+1)

can be found by

f =
(

KV1 +
n−1∑
r=1

Kr Vr Sr + VnSn

)−1

· (q − a). (54)

[24]. Hence we obtain the numerical solution of (37). By making the transformation
of the independent variable x by t defined in (36), we obtain the numerical solution
of the initial value problem (35) in [a, b] .

4 Fluctuationlessness theorem in boundary value problems

We consider the following Boundary Value Problem (BVP) and its boundary condi-
tions:

y′′ + p (x) y′ + q (x) y = r (x) , (55)

a1 y (0) + a2 y′ (0) = c, (56)

b1 y (1) + b2 y′ (1) = d, (57)

where 0 < x < 1. In the case when the values for r (x) , c and d are all 0, the problem
is a linear homogenous BVP. If we assume y = φ (x) is a nontrivial solution, then for
any constant k, the function y = kφ (x) is also a solution because of the linear and
homogenous structure of the problem. Therefore there are infinitely many solutions
related to φ. It is also possible to show that the equations (55), (56) and (57) have
at most one nontrivial solution. But a more general second order BVP may have a
solution set related to linearly independent solutions, say φ1 and φ2 [2].

In this paper we will concentrate on the BVPs that is presented in the equations (55),
(56) and (57). This problem have a unique solution. To find this solution numerically,
we propose the following structure:
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f (x) =
n∑

k=0

fk xk (58)

If we substitute this solution in the equations (55), (56) and (57), we obtain the fol-
lowing equations:

r (x) = q (x) f0 + (q (x) x + p (x)) f1 +
(

q (x) x2 + 2p (x) x + 2
)

f2

+
(

q (x) x3 + 3p (x) x2 + 6x
)

f3

+ · · · +
(

q (x) xn + np (x) xn−1 + n (n − 1) xn−2
)

fn (59)

c = a1 f0 + a2 f1 (60)

d = b1 f0 + (b1 + b2) f1 +
n∑

k=2

(b1 + kb2) fk (61)

For the numerical solution we will apply Fluctuationlessness Theorem in the interval
[0, 1]. We write the following equation for (55) in terms of operators as follows:

M(n) (̂r) e(n)
1 =

[
M(n)

(
f̂ ′′) + M(n) ( p̂) M(n)

(
f̂ ′) + M(n) (q̂) M(n)

(
f̂

)]
e(n)

1 ,

(62)

where M(n)
(

f̂
)

stands for the matrix representation of the operator f̂ in the Hilbert
Space Hn . By Fluctuationlessness Theorem we know that

M(n)
(

f̂
) ≈ f

(
X(n)

)
. (63)

The matrix X(n) is symmetric and its spectral representation can be written as follows:

X(n) =
n∑

i=1

ξi xi xT
i (64)

Here ξi is the i th eigenvalue and xi is its eigenvector with a unit norm. Substituting
(63) and (64) in (62) we obtain the following result:

n∑
i=1

[
f ′′ (ξi ) + p (ξi ) f ′ (ξi ) + q (ξi ) f (ξi ) − r (ξi )

] (
xT

i e(n)
1

)
xi = 0 (65)

Since the eigenvectors are linearly independent, then the coefficients of xi equal zero.
So we can write the following equations:

f ′′ (ξi ) + p (ξi ) f ′ (ξi ) + q (ξi ) f (ξi ) − r (ξi ) = 0, i = 1, . . . , n (66)
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To find the unknown constants fi , (2 ≤ i ≤ n) in (59) we construct a set of vectors
and matrices as follows:

K1(i, j) =
{

q (ξi+1) ξi+1, i = j
0, i �= j

,

K2(i, j) =
{

p (ξi+1) , i = j
0, i �= j

,

K3(i, j) =
{

i + 1, i = j
0, i �= j

,

K4(i, j) =
{

i (i + 1) , i = j
0, i �= j

,

V1 =

⎡
⎢⎢⎢⎣

ξ2 ξ2
2 . . . ξn−1

2
ξ3 ξ2

3 . . . ξn−1
3

...
...

...
...

ξn ξ2
n . . . ξn−1

n

⎤
⎥⎥⎥⎦ ,

V2 =

⎡
⎢⎢⎢⎣

1 ξ2 ξ2
2 . . . ξn−2

2
1 ξ3 ξ2

3 . . . ξn−2
3

...
...

...
...

...

1 ξn ξ2
n . . . ξn−2

n

⎤
⎥⎥⎥⎦ ,

a(i,1) = [
q (ξi+1) f0 + (p (ξi+1) + q (ξi+1) ξi+1) f1

]
,

rT = [
r (ξ2) . . . r (ξn)

]
,

fT = [
f2 . . . fn

]
. (67)

We can write the equation (59) in terms of these matrices and vectors as follows:

r = (K1V1 + K2V1K3 + V2K4) f + a (68)

Since the eigenvalues are distinct, the matrices V1 and V2 are invertible. Therefore
we can find f by the following formula:

f = (K1V1 + K2V1K3 + V2K4)
−1 (r − a) (69)

When we substitute the values of f in the equation (58) we obtain the following equa-
tion.

f (x) = f0 + f1x +
n∑

k=2

fk xk (70)

Here all the values except f0 and f1 are known. To find f0 and f1, the equations (60),
(61) and (70) can be solved together. Hence we obtain the numerical solution [25].
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5 Numerical solution of ordinary differential equations with eigenvalue
problems

We consider the problem consisting of the differential equation,

y′′ + λy = 0, (71)

together with the boundary conditions

y (0) = 0, y (1) = 0. (72)

The analytical solution of the problems (71) and (72) depends on the values of the
unknown λ. If λ = 0, then there is only trivial solution φ(x) = 0. In the case of λ < 0,
the solution is again trivial, i.e: φ(x) = 0. The last case occurs when λ > 0. The
solutions exists when

λ = (kπ)2 , k = 1, . . . , n, . . . (73)

The numbers λ are called eigenvalues. The eigenfunctions associated with these eigen-
values are called eigenfunctions and these functions are φn(x) = cn sin nπx .

We will obtain the numerical solution to the problems (71) and ( 72) by Fluctuation-
lessness Theorem. We again propose the same structure for the numerical solution:

f (x) =
n∑

k=0

fk xk (74)

When we substitute this solution to the equations (71) and (72), we will have the
following equations:

λ f0 + (λx) f1 +
(

2 + λx2
)

f2 + · · · +
(

n (n − 1) xn−2 + λxn
)

fn = 0 (75)

f (0) = f0 = 0 (76)

f (1) =
n∑

k=1

fk = 0 (77)

We obtain the following equation for f1 by (77):

f1 = −
n∑

k=2

fk (78)

The equations (78) and (75) form the following equation finally:

0 =
(

2 + λx2 − λx
)

f2 +
(
(3)(2) + λx3 − λx

)
f3

+ · · · +
(

n (n − 1) xn−2 + λxn − λx
)

fn (79)
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By Fluctuationlessness Theorem we obtain the following equations:

(
2 + λξ2

1 − λξ1

)
f2 + · · · +

(
n (n − 1) ξn−2

1 + λξn
1 − λξ1

)
fn = 0(

2 + λξ2
2 − λξ2

)
f2 + · · · +

(
n (n − 1) ξn−2

2 + λξn
2 − λξ2

)
fn = 0

...(
2 + λξ2

n − λξn

)
f2 + · · · +

(
n (n − 1) ξn−2

n + λξn
n − λξn

)
fn = 0

We will use the following matrices and vectors to find the unknown values fk , k =
2, . . . , n:

A0 =

⎡
⎢⎢⎢⎣

2 6ξ1 12ξ2
1 . . . n (n − 1) ξn−2

1
2 6ξ2 12ξ2

2 . . . n (n − 1) ξn−2
2

...
...

...
...

...

2 6ξn 12ξ2
n . . . n (n − 1) ξn−2

n

⎤
⎥⎥⎥⎦

(n×n−1)

,

A1 =

⎡
⎢⎢⎢⎣

−ξ1 + ξ2
1 −ξ1 + ξ3

1 . . . −ξ1 + ξn
1−ξ2 + ξ2

2 −ξ2 + ξ3
2 . . . −ξ2 + ξn

2
...

...
...

...

−ξn + ξ2
n −ξn + ξ3

n . . . −ξn + ξn
n

⎤
⎥⎥⎥⎦

(n×n−1)

,

fT = [
f2 . . . fn

]
(n−1×1)

(80)

Therefore (75) can be expressed by these matrices and vectors as follows:

(A0 + λA1) f = 0 (81)

In this system of equations, there are n equations and n − 1 unknown fi values. This
situation occurs since f1 is written in terms of unknown fi values, where i = 2, . . . , n.
Also the matrices A0 and A1 are rectangular matrices. To make this system balanced,
we multiply the equation (81) by AT

1 from left. The new equation becomes

(
AT

1 A0 + λAT
1 A1

)
f = 0. (82)

We rename the above matrices as B0 = AT
1 A0 and B1 = AT

1 A1, so the equation (82)
becomes

(B0 + λB1) f = 0. (83)

We define a new vector g as follows:

g = B1f (84)
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Since the eigenvalues of X(n) in the space of Hn are distinct, then B1 is invertible.
Therefore f can be written as

f = B−1
1 g. (85)

If we substitute (85) in (82) we obtain the following equation:

(
−B0B−1

1 − λI
)

g = 0 (86)

Here λ values are the eigenvalues of the matrix −B0B−1
1 and g vector is the eigenvec-

tors. Once we obtain g vector, we can calculate f vector by (85).

6 Implementation

In this section we give some numerical examples related to initial value problems with
different orders starting the simplest case.

Example 1 The first problem is

y′ (x) − y (x) = 0, y (0) = 1, (87)

over the interval [0, 1]. The analytical solution of this problem is y (x) = ex . For the
numerical solution we propose the following structure:

f (x) = f0 +
n∑

k=1

fk xk (88)

Table 1 shows the numerical results of the absolute error of the solutions obtained
by Fluctuationlessness Theorem and MacLaurin series of the analytical solution on
varying number of nodes. The error is calculated by the following equation.

e =
(

n∑
k=1

| f (xk) − y (xk)|2
)1/2

, (89)

where xk is the kth node of the given interval divided equally to n nodes.
We observe from this table, the numerical solution by using Fluctuationlessness

Theorem gives better results than MacLaurin Series even by using less nodes. The
series method showed approximately same order of error after using 20 nodes.

Example 2 Table 2 shows the results for some differential equations of the form

y′ (x) + a (x) y (x) = 0, y (0) = 1, (90)

where a (x) is taken as 5,−5, 10,−10, 20,−20 in each of the problem.
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Table 1 Comparison of the
analytical solution of 1-st
example with numerical
solutions on varying nodes

n Abs.err. with Abs err. with
fluctuationlessness Thm. MacLaurin series

5 2.3362 × 10−6 0.00041637

7 3.485 × 10−9 8.18972 × 10−6

10 5.34472 × 10−14 8.81818 × 10−9

20 9.15513 × 10−16 9.15513 × 10−16

50 1.4895 × 10−15 1.4895 × 10−15

Table 2 Comparison of the
analytical solutions of ODEs
with numerical solution when
n = 20

a (x) Analytic Abs. err. with Abs. err. with
soln. fluc. Thm. MacLaurin series

−5 y = e5x 4.83756 × 10−14 4.2574 × 10−6

5 y = e−5x 3.3950 × 10−15 2.75737 × 10−6

−10 y = e10x 6.7711 × 10−9 12.0693

10 y = e−10x 4.26348 × 10−13 4.9011

−20 y = e20x 97.80376 6.5587 × 107

20 y = e−20x 1.0312 × 10−8 7.8596 × 106

We can clearly see from this table, numerical solution obtained by Fluctuationless-
ness Theorem gives better results than the series solution. In Table 3 the errors are
showed by using 50 nodes.

We observe that as the power of exponential functions increases in absolute value,
the smoothness of the curve decreases. Therefore the numerical solution moves away
from the exact solution depending on the power of exp(x). And we obtain better results
in larger number of nodes.

The next example is for the higher order ODE.

Example 3 We consider the following third order ODE with given initial values:

y′′′ + 4y′ = x

y (0) = 0, y′ (0) = 0, y′′ (0) = 1 (91)

The analytical solution of this problem is

y(x) = 3

16
(1 − cos 2x) + 1

8
x2. (92)

When we solve this problem in H10 by Fluctuationlessness Theorem, we obtain the
error as 1.8971×10−9. The error of the analytical solution with its series expansion is
calculated as 1.6167×10−6. Therefore the numerical solution by Fluctuationlessness
Theorem achieved a good approximation in Example 3.
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Table 3 Comparison of the
analytical solutions of ODEs
with numerical solution when
n = 50

a (x) Analytic Abs. err. with Abs. err. with
soln. fluc. Thm. MacLaurin series

−5 y = e5x 1.4352 × 10−13 1.4352 × 10−13

5 y = e−5x 1.1618 × 10−14 1.1618 × 10−14

−10 y = e10x 2.2392 × 10−11 2.2392 × 10−11

10 y = e−10x 1.1846 × 10−12 1.1846 × 10−12

−20 y = e20x 9.9316 × 10−5 0.87991

20 y = e−20x 5.1667 × 10−9 0.40115

Table 4 Comparison of the
analytical solution of 4th
example with numerical
solutions on varying nodes

n Abs.err. with F.T. Abs err. with MacLaurin series

10 1.19907 × 10−9 9.62475 × 10−7

20 2.1524 × 10−25 2.46558 × 10−17

50 3.04210 × 10−84 2.699 × 10−59

Example 4 This example is a Boundary Value Problem given by the following:

y′′ + 2y = −x

y(0) = 0, y(1) + y′(1) = 0 (93)

The analytical solution of this problem is calculated as

y(x) = −√
2x cos

√
2 − x sin

√
2 + 2 sin

√
2x

2
(√

2 cos
√

2 + sin
√

2
) . (94)

In Table 4, the errors obtained by the numerical solution with Fluctuationlessness
Theorem and the series expansion of the analytical solution is presented:

We can observe from this table that the numerical solution by the developed method
has a better approximation even by using not too many mesh points.

Example 5 The last example we will study is a Boundary Value Problem containing
an unknown parameter, which is an eigenvalue problem given by

y′′ + λy = 0, (95)

together with the boundary conditions

y (0) = 0, y (1) = 0. (96)
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We will study in H10. When we apply the Fluctuationlessness Theorem we obtain the
eigenvalues as

λ1 = 9.87, λ2 = 39.48, λ3 = 88.83, λ4 = 158.12, λ5 = 248.45,

λ6 = 398.22, λ7 = 618.841, λ8 = 2302.17, λ9 = 4974.02. (97)

The eigenvalues obtained by analytically are calculated as

λ1 = 9.8696, λ2 = 39.4784, λ3 = 88.8264, λ4 = 157.914, λ5 = 246.74,

λ6 = 355.306, λ7 = 483.611, λ8 = 631.655, λ9 = 799.438. (98)

The numerical solution is found by the eigenvectors of −B0B−1
1 . We represent the

eigenvectors associated with these eigenvalues as uk, (k = 1, . . . , 9). If we write the
coefficients of the eigenfunctions as a vector vk , this vector is calculated by as

vk = B−1
1 uk, k = 1, . . . , 9. (99)

We denote the entries of the vectors vk as h(k)
j and the first coefficient h1 is found by

h(k)
1 = −

n−1∑
j=1

v( j,1)
k . (100)

Other coefficients are calculated as

h(k)
j = v( j,1)

k . (101)

Therefore the numerical solution can be obtained as

φk (x) = h(k)
1 x +

n−1∑
j=1

h(k)
j x j+1. (102)

The analytical solution of this problem can be written as follows:

yn (x) = cn sin (nπx) , n = 1, . . . , 9 (103)

The coefficients cn can be different in these functions or some of them may be equal.
In order to find these coefficients we normalize each eigenfunction in the unit interval
as

1∫

0

(cn sin [nπx])2 dx = 1. (104)
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Table 5 Comparison of the
eigenfunctions of 5th example
with numerical solutions

Eigenfunctions Abs. err. by Abs. err. with
fluc. Thm. Maclaurin series

φ1(x) 1.87648 × 10−9 0.0103135

φ2(x) 3.50988 × 10−5 17.7818

φ3(x) 6.99729 × 10−4 1194.96

φ4(x) 0.0416281 21135.1

φ5(x) 0.146869 183194

φ6(x) 0.817106 1.03076 × 106

φ7(x) 0.900223 4.35423 × 106

φ8(x) 3.15304 1.50009 × 107

φ9(x) 4.56265 4.43658 × 107

We obtain the coefficients cn as −√
2 and

√
2. We apply the same procedure for the

numerical solutions:

1∫

0

(skφk (x))2 dx = 1, k = 1, . . . , 9 (105)

The coefficients are different in each eigenfunction. For example for the first eigen-
function φ1 (x), s1 is calculated as −7.9915.

The resulting errors obtained by Fluctuationlessness Theorem and the MacLaurin
series expansion of each eigenfunction are presented in Table 5.

7 Conclusion

In this work we developed a new method for the numerical solution of Initial Value
Problems of any order and Boundary Value Problems of Linear Ordinary Differential
Equations by using Fluctuationlessness Theorem. We are interested on the problems
which have analytic solutions at the given initial and boundary conditions to make a
comparison of the numerical method we develop. However it must be noted that the
singular solution y = 0 is also a solution of differential equations. Since the solutions
of the problems are analytic, we can obtain their MacLaurin series expansion. The
results of the numerical experiments show a remarkable convergence comparing to
their series expansion at the indicated degree even we use a few number of nodes. We
also observe the effect of structure of the analytic solution on the convergence.
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